中考二模数学试题
2023年10月28日发(作者:工人个人工作总结(精选20篇))
握手礼说明了礼仪的什么特征-
2019年中考第一次模拟调研
九年级数学学科
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑墨水签字笔填写在答题卡及本试卷上.
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
.......1.下列计算结果为负数的是( )
A.(-3)+(-4)
A.a3
A.0<a<1
A.0
B.(-3)-(-4)
B.a7
B.1<a<2
B.1
C.(-3)(-4)
C.a8
C.2<a<3
C.0和1
D.(-3)D.a9
D.3<a<4
D.1和-1
-4
2.计算a6×(a2)3÷a4的结果是( )
3.若锐角三角函数tan55°=a,则a的范围是( )
4.下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是( )
5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4
cm,则球的半径长
是( )
A.2 cm B.2.5 cm C.3 cm D.4 cm
6.如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB的长度为a,则在这三种视图的所有线段中,长度为a的线段条数是( )
A.12条
B.9条 C.6条 D.5条
A
E
O
F
D
A
主视图
B
左视图
B
(第5题)
C
图①
俯视图
(第6题)
图②
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置上)
....7.函数y=1-x中,自变量x的取值范围是 .
8.分解因式a3-a的结果是 .
9.若关于x的一元二次方程x2-kx-2=0有一个根是1,则另一个根是 .
10.辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67
500吨.用科学记数法表示67
500是 . 11.一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12 S22
(填“>”、“=”或“<”).
k12.在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图像与一次函数y2=-x+a(a为常x数,a≠0)的图像相交于A、B两点.若点A的坐标为(m,n),则点B的坐标为 .
⌒13.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3
cm,∠A=110°,则劣弧BD的长为
cm.
14.如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG= °.
A D
B
B
O
H
C
(第13题)
C
G
A
E
D
F
(第14题)
15.如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为 (用含a的代数式表示).
⌒⌒16.如图,以AB为直径的半圆沿弦BC折叠后,AB与⌒CB相交于点D.若CD=3BD,则∠B= °.
1
A
I
B
H
L
G
A
D
O
C
(第16题)
B
C
J
D E
(第15题)
K
F
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过.......程或演算步骤)
1117.(6分)计算:a+2+÷a-.
aa
2-x>0,2x-1并把它的解集在数轴上表示出来. 18.(7分)解不等式组5x+1+1≥,32
-3
-2 -1
0 1
2 3
(第18题) 19.(7分)如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.
(1)求证:四边形AFCE是平行四边形;
(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是 ▲ (直接写出这个条件的序号).
B
F
(第19题)
C
A
E
D
O
20.(8分)某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:
品名
批发价(单位:元/千克)
零售价(单位:元/千克)
问:他当天卖完这些西红柿和豆角能赚多少钱?
21.(8分)超市水果货架上有四个苹果,重量分别是100
g、110
g、120
g和125
g.
(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是 ▲ ;
(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232
g的概率是多少?
22.(8分)河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:
收集数据
(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是 ▲ .
①在九年级学生中随机抽取36名学生的成绩;
②按男、女各随机抽取18名学生的成绩;
③按班级在每个班各随机抽取4名学生的成绩.
整理数据
西红柿
3.6
5.4
豆角
4.6
7.5 (2)将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:
①C类和D类部分的圆心角度数分别为 ▲ °、 ▲ °;
②估计九年级A、B类学生一共有 ▲ 名.
成绩(单位:分) 频数
A类(80~100)
B类(60~79)
C类(40~59)
D类(0~39)
18
9
6
3
频率
1
21
41
61
12九年级学生数学成绩分布扇形统计图
B类
25%
A类
50%
数据来源:学业水平考试数学成绩抽样
(第22题)
分析数据
(3)教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:
学校
河西中学
复兴中学
平均数(分) 极差(分) 方差
71
71
52
80
432
497
A、B类的频率和
0.75
0.82
你认为哪所学校本次测试成绩较好,请说明理由.
23.(8分)下图是投影仪安装截面图.教室高EF=3.5
m,投影仪A发出的光线夹角∠BAC=30°,投影屏幕高BC=1.2
m.固定投影仪的吊臂AD=0.5
m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果精确到0.1 m).
(参考数据:tan15°≈0.27,tan30°≈0.58)
(第23题)
F
C
D
A
E
B 24.(9分)一辆货车从甲地出发以每小时80 km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5 h后,在距乙地160 km处与轿车相遇.图中线段AB表示货车离乙地的距离y1
km与货车行驶时间x
h的函数关系.
(1)求y1与x之间的函数表达式;
(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图像,求该图像与x轴交点坐标并解释其实际意义.
25.(8分)某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试销售,得知该产品每天的销售量t(件)与每件销售价x(元/件)之间有如下关系:t=-3x+90.
(1)请写出该超市销售这种产品每天的销售利润y(元)与x之间的函数表达式;
(2)当x为多少元时,销售利润最大?最大利润是多少?
26.(9分)Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC延长线于点E.连接ED,交AC于点G,且AG=AD.
(1)求证:AB与⊙O相切;
(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.
D
B
(第26题)
A
G
C
O
F
E
O
2.5
(第24题)
B
x∕h
160
y∕km
A 27.(10分)图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2
cm.将∠AOB沿PQ折叠,点O落在纸片所在平面内的C处.
(1)①当PC∥QB时,OQ= ▲ cm;
②在OB上一点Q,使PC⊥QB(尺规作图,保留作图痕迹);
(2)当折叠后重叠部分为等腰三角形时,求OQ的长.
B
Q
C
O
P A
①
B
O
P
A
备用图1
(第27题)
B
O
P A
备用图2
2019年中考第一次模拟调研
数学参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(每小题2分,共计12分)
题号
答案
1
A
2
C
3
B
4
A
5
B
6
D
二、填空题(每小题2分,共计20分)
7.x≤1 8.a(a+1)(a-1) 9.-2
10.6.75×104
11.=
7π2+2
12.(n,m) 13. 14.108° 15.a 16. 18°
3
2三、解答题(本大题共10小题,共计88分)
17.(本题6分)
a2+2a+1a2-1解:原式 =÷
aaa2+2a+1a =·2
aa-1(a+1) 2a =·
a(a+1)(a-1)a+1 =. ·························································································· 6分
a-118.(本题7分)
解:解不等式①,得x<2. ············································································· 2分
解不等式②,得x≥ —1. ········································································· 4分
所以,不等式组的解集是-1≤x<2. ························································ 5分
画图
-1
0
2
································································ 7分
1
19.(本题7分)
解:(1)∵四边形ABCD是平行四边形
∴AE∥CF
∴∠DAC=∠BCA ········································································ 1分
在△AOE和△COF中
∠DAC=∠ACB
AO=CO
∠AOE=∠COF∴△AOE≌△COF(ASA) ··································································· 3分
∴AE=CF
∴四边形AFCE是平行四边形 ·························································· 5分
(2)② ····························································································· 7分
20.(本题8分)
解:设批发了西红柿x千克,豆角y千克
xy40
由题意得: ····················································· 3分
3.6x4.6y180x4
解得:
……………………………………………6分
y36 (5.4 — 3.6)× 4+(7.5 — 4.6)× 36 = 111.6(元) ········································ 7分
答:卖完这些西红柿和豆角能赚111.6元. ···················································· 8分
21.(本题8分)
解:(1)1 ································································································ 2分
4
①(100,110);②(100,120);③(100,125);④(110,120);
⑤(110,125);⑥(120,125) ··························································· 6分
总重量超过232g的结果有2种,即(110,125),(120,125) ··················· 7分
因此,总重量超过232g的概率是22.(本题8分)
解:(1)① ···························································································· 2分
(2)① 60°,30° ··················································································· 4分
② 225 ··················································································· 6分
(3)两所学校都可以选择只要理由正确皆可得分 ············································· 8分
选择河西中学,理由是平均分相同,河西中学极差和方差较小,河西中学成绩更稳定.
选择复兴中学,理由是平均分相同,复兴中学A,B类频率和高,复兴中学高分人数更多.
23.(本题8分)
解:过点A作AP⊥EF,垂足为P
∵AD⊥DE,∴∠ADE=90°
∵AD∥EF,∴∠DEP=90°
∵AP⊥EF,∴∠APE=∠APC=90°,∴∠ADE=∠DEP=∠APE=90°
∴四边形ADEP为矩形
∴EP=AD=0.5m ····················································································· 2分
∠APC=90°,∠ACB=45°
∴∠CAP=45°=∠ACB,∠BAP=∠CAP—∠CAB=45°—30°=15°
∴AP=CP ······························································································· 4分
在Rt△APB中
BPtan ∠BAP==tan15°=0.27 ·································································· 5分
AP
∴BP=0.27AP=0.27CP,∴BC=CP—BP=CP—0.27CP=0.73CP=1.2m
∴CP=1.64m ··························································································· 7分
∴CF=EF—EP—CP=3.5—0.5—1.64=1.36≈1.4m
······································ 8分
1 ·················································· 8分
3
(2)共有6种等可能出现的结果,分别为 ······················································ 3分 24.(本题9分)
解:(1)由条件可得k1=—80 1分
设y1=—80x+b1,过点(2.5,160),可得方程160=—80×2.5+b1
解得b1=360 ····················································································· 3分
∴y1
=—80x+360 ················································································ 4分
(2)当y1
=0时,可得x=4.5
轿车和货车同时到达,终点坐标为(4.5,360)
设y2
=k2
x+b2
,过点(2.5,160)和(4.5,360)
解得k2
=100,b2
=—90
∴y2
=100x—90 图像如下图
························································ 7分
与x轴交点坐标为(0.9,0) ···································································· 8分
说明轿车比货车晚出发0.9h ·································································· 9分
25.(本题8分)
解:(1)表达式为y=(—3x+90)(x—20)
化简为y=—3x²+150x—1800 ································································· 4分
(2)把表达式化为顶点式y=—3(x—25)² +75 ·················································· 6分
当x=25时,y有最大值75
答:当售价为25元时,有最大利润75元 ················································· 8分
26.(本题9分)
(1)证明:连结OD
∵∠ACB=90°,∴∠OED+∠EGC=90° ·································································· 1分
∵⊙O,∴OD=OE,∴∠ODE=∠OED
∵AG=AD,∴∠ADG=∠AGD ················································································ 3分
∵∠AGD=∠EGC
∴∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°
∴OD⊥AB ························································································ 4分
∵OD为半径
∴AB是⊙O的切线 ············································································· 5分
(2)连接OF.∵EF∥AB,AC:BC=4:3,∴CF:CE=4:3.
又∵EF=5,∴CF=4,CE=3.
设半径=r,则OF=r,CF=4,CO=r-3. 25在Rt△OCF中,由勾股定理,可得r=. ………………………………………7分
6∵EF∥AB,∴∠CEF=∠B,∴△CEF∽△DBO,∴CFCE=,
DO DB
25∴BD=. ······················································································ 9分
827.(本题10分)
解:(1)① 2; ………………………………………………………………………………2分
② 分点C、P在BQ同侧和异侧两种情况,画对一种就给全分;
B
QB
C
O
A
P
QC
O
P A
图2
图1
·················································································································· 5分
(2)当点C在∠AOB的内部或一边上时,则重叠部分即为△CPQ.
因为△CPQ是由△OPQ折叠得到,所以当△OPQ为等腰三角形时,重叠部分必为等腰三角形.
如图1、2、3三种情况:
O
Q
P
图4
A
O
P
图5
A
C
O
图1
PA
O
图2
PA
O
图3
PA
QBQ
BQ
B当QO=QP时,
当PQ=PO时, 当OQ=OP时,
OQ=OP=2cm
B
Q
OQ=2OP=2cm
OQ=2OP=22cm
2当点C在∠AOB的外部时,
B
C
当点C在射线OB的上方时(如图4), 当点C在射线OA的下方时(如图5),
OQ=6-2(cm) OQ=6+2(cm)
………………………………………………………………………………10分