本文作者:kaifamei

高中数学二级结论总结

更新时间:2023-01-20 20:23:11 人在看 0条评论

高中数学二级结论总结


2023年1月20日发(作者:幸福的眼泪作文15篇)

高中数学二级结论

1.任意的简单n面体内切球半径为

S

V3

(V是简单n面体的体积,

S是简单n面体的表面积)

2.在任意ABC△内,都有tanA+tanB+tanC=tanA·tanB·tanC

推论:在ABC△内,若tanA+tanB+tanC<0,则ABC△为钝角三角形

3.斜二测画法直观图面积为原图形面积的

4

2

4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点

5.导数题常用放缩1xex、1ln

11



xx

x

x

x

)1(xexex

6.椭圆)0,0(1

2

2

2

2

ba

b

y

a

x

的面积S为πabS

7.圆锥曲线的切线方程求法:隐函数求导

推论:①过圆222)()(rbyax上任意一点),(

00

yxP的切线方程为2

00

))(())((rbybyaxax

①过椭圆)0,0(1

2

2

2

2

ba

b

y

a

x

上任意一点

),(

00

yxP的切线方程为1

2

0

2

0

b

yy

a

xx

①过双曲线)0,0(1

2

2

2

2

ba

b

y

a

x

上任意一点

),(

00

yxP的切线方程为1

2

0

2

0

b

yy

a

xx

8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程

①圆022FEyDxyx的切点弦方程为0

22

00

00



FE

yy

D

xx

yyxx

①椭圆)0,0(1

2

2

2

2

ba

b

y

a

x

的切点弦方程为1

2

0

2

0

b

yy

a

xx

①双曲线)0,0(1

2

2

2

2

ba

b

y

a

x

的切点弦方程为1

2

0

2

0

b

yy

a

xx

①抛物线)0(22ppxy的切点弦方程为)(

00

xxpyy

①二次曲线的切点弦方程为0

222

00

0

00

0





F

yy

E

xx

DyCy

xyyx

BxAx

9.①椭圆)0,0(1

2

2

2

2

ba

b

y

a

x

与直线)0·(0BACByAx相切的条件是22222CbBaA

②双曲线)0,0(1

2

2

2

2

ba

b

y

a

x

与直线)0·(0BACByAx相切的条件是22222CbBaA

10.若A、B、C、D是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC、

BD的斜率存在且不等于零,并有0

BDAC

kk,(

AC

k,

BD

k分别表示AC和BD的斜率)

11.已知椭圆方程为)0(1

2

2

2

2

ba

b

y

a

x

,两焦点分别为

1

F,

2

F,设焦点三角形

21

FPF中

21

FPF,则

221cose(2

max

21cose)

12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为

0

x的点P的距离)公式

02,1

exar

13.已知

1

k,

2

k,

3

k为过原点的直线

1

l,

2

l,

3

l的斜率,其中

2

l是

1

l和

3

l的角平分线,则

1

k,

2

k,

3

k满足下述

转化关系:

32

2

2

2

2332

121

2

kkk

kkkk

k





,

31

2

31

2

3131

2

)()1(1

kk

kkkkkk

k



,

21

2

2

2

2112

321

2

kkk

kkkk

k





14.任意满足rbyaxnn的二次方程,过函数上一点),(

11

yx的切线方程为rybyxaxnn1

1

1

1

15.已知f(x)的渐近线方程为y=ax+b,则a

x

xf

x



)(

lim,baxxf

x





])([lim

16.椭圆)0(1

2

2

2

2

ba

b

y

a

x

绕Ox坐标轴旋转所得的旋转体的体积为πabV

3

4

17.平行四边形对角线平方之和等于四条边平方之和

18.在锐角三角形中CBACBAcoscoscossinsinsin

19.函数f(x)具有对称轴

ax

,bx)(ba,则f(x)为周期函数且一个正周期为|22|ba

20.y=kx+m与椭圆)0(1

2

2

2

2

ba

b

y

a

x

相交于两点,则纵坐标之和为

222

22

bka

mb

21.已知三角形三边x,y,z,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)

ACCBBAS

zAC

yCB

xBA









2

2

2

2

22.圆锥曲线的第二定义:

椭圆的第二定义:平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率,

a

c

e)的点的集合(定

点F不在定直线上,该常数为小于1的正数)

双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线

23.到角公式:若把直线

1

l依逆时针方向旋转到与

2

l第一次重合时所转的角是,则

21

12

1

tan

kk

kk

θ=



24.A、B、C三点共线OD

nm

OBOCnOAmOD



1

,(同时除以m+n)

25.过双曲线)0,0(1

2

2

2

2

ba

b

y

a

x

上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为

2

ab

26.反比例函数)0(k

x

k

y为双曲线,其焦点为)2,2(kk和)2,2(kk,k<0

27.面积射影定理:如图,设平面α外的①ABC在平面α内的射影为①ABO,分别记①ABC的面积和①ABO的面

积为S和S′,记①ABC所在平面和平面α所成的二面角为θ,则cosθ=S′:S

28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例

角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,

那么该点与对角顶点的连线是三角形的一条角平分线

29.数列不动点:

定义:方程的根称为函数的不动点

利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的

数列,这种方法称为不动点法

定理1:若是的不动点,满足递推关系,则

,即是公比为的等比数列.

定理2:设,满足递推关系,初值条件

(1)若有两个相异的不动点,则(这里)

(2)若只有唯一不动点,则(这里)

定理3:设函数有两个不同的不动点,且由确定着数列

xxf)()(xf

)(xf

)(

1

nn

afa

),1,0()(aabaxxfp)(xf

n

a)1(),(

1



nafa

nn

)(

1

paapa

nn



}{pa

n

a

)0,0()(

bcadc

dcx

bax

xf

}{

n

a1),(

1



nafa

nn

)(

11

afa

)(xfqp,

qa

pa

k

qa

pa

n

n

n

n



1

1

qca

pca

k

)(xfpk

papa

nn

1

11

da

c

k

2

)0,0()(

2





ea

fex

cbxax

xf

21

,xx

)(

1nn

ufu

,那么当且仅当时,

30.

(1)











34

2

cos

2

cos

2

cos4

24

2

sin

2

sin

2

sin4

14

2

cos

2

cos

2

cos4

4

2

sin

2

sin

2

sin4

)sin()sin()sin(

kn

nCnBnA

kn

nCnBnA

kn

nCnBnA

kn

nCnBnA

nCnBnA

,*Nk

(2)若πCBA,则:

2

sin

2

sin

2

sin8

sinsinsin

2sin2sin2sinCBA

CBA

CBA





2

sin

2

sin

2

sin41coscoscos

CBA

CBA

2

sin

2

sin

2

sin21

2

sin

2

sin

2

sin222

CBACBA



4

sin

4

sin

4

sin41

2

sin

2

sin

2

sin

CBACBA





2

sin

2

sin

2

sin4sinsinsin

CBA

CBA

2

cot

2

cot

2

cot

2

cot

2

cot

2

cot

CBACBA



⑦1

2

tan

2

tan

2

tan

2

tan

2

tan

2

tan

ACCBBA

⑧CBACBABACACBsinsinsin4)sin()sin()sin(

(3)在任意①ABC中,有:

8

1

2

sin

2

sin

2

sin

CBA

8

33

2

cos

2

cos

2

cos

CBA

2

3

2

sin

2

sin

2

sin

CBA

2

33

2

cos

2

cos

2

cos

CBA

8

33

sinsinsinCBA

8

1

coscoscosCBA

2

33

sinsinsinCBA

2

3

coscoscosCBA

}{

n

u

aeb2,02

2

1

21

11)(

xu

xu

xu

xu

n

n

n

n

4

3

2

sin

2

sin

2

sin222

CBA

⑩1

2

tan

2

tan

2

tan222

CBA

⑪3

2

tan

2

tan

2

tan

CBA

9

3

2

tan

2

tan

2

tan

CBA

⑬33

2

cot

2

cot

2

cot

CBA

⑭3cotcotcotCBA

(4)在任意锐角①ABC中,有:

33tantantanCBA

9

3

cotcotcotCBA

③9tantantan222CBA

④1cotcotcot222CBA

31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同

一条直线上

32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,

其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高

拟柱体体积公式[辛普森(Simpson)公式]:设拟柱体的高为H,如果用平行于底面的平面γ去截该图形,所得到

的截面面积是平面γ与一个底面之间距离h的不超过3次的函数,那么该拟柱体的体积V为

HSSSV)4(

6

1

201

,式中,

1

S和

2

S是两底面的面积,

0

S是中截面的面积(即平面γ与底面之间距离

2

H

h

时得到的截面的面积)

事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时

所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积

33.三余弦定理:设A为面上一点,过A的斜线AO在面上的射影为AB,AC为面上的一条直线,那么

①OAC,①BAC,①OAB三角的余弦关系为:cos①OAC=cos①BAC·cos①OAB(①BAC和①OAB只能是锐角)

34.在Rt△ABC中,C为直角,内角A,B,C所对的边分别是a,b,c,则△ABC的内切圆半径为

2

cba

35.立方差公式:))((2233babababa

立方和公式:

))((2233babababa

36.已知△ABC,O为其外心,H为其垂心,则OCOBOAOH

37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值

)0(

2

2

ba

b

a

推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(

2

2

ba

b

a

38.1

2

)!1(!!2

1

n

θxn

xx

n

e

n

xx

xe

推论:

2

1

2x

xex

39.)2(aaxeexx

推论:①)0(ln2

1

tt

t

t②)20,0(ln

ax

ax

ax

x

40.抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦

41.双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长)

42.向量与三角形四心:

在△ABC中,角A,B,C所对的边分别是a,b,c

(1)0OCOBOAO是ABC的重心

(2)OAOCOCOBOBOAO为ABC的垂心

(3)OOCcOBbOAa0为ABC的内心

(4)OCOBOAO为ABC的外心

43.正弦平方差公式:)sin()sin(sinsin22

44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点

45.三角函数数列求和裂项相消:

2

1

cos2

)

2

1

sin()

2

1

sin(

sin



xx

x

46.点(x,y)关于直线Ax+By+C=0的对称点坐标为





2222

)(2

,

)(2

BA

CByAxB

y

BA

CByAxA

x

47.圆锥曲线统一的极坐标方程:

cos1e

ep

(e为圆锥曲线的离心率)

48.超几何分布的期望:若),,(MNnX~H,则

N

nM

XE)((其中

N

M

为符合要求元素的频率),

)

1

1

1)(1()(



N

n

N

M

N

M

nXD

49.

n

a为公差为d的等差数列,

n

b为公比为q的等比数列,若数列

n

c满足

nnn

bac,则数列

n

c的前n

项和

n

S为

2

1

2

1

)1(





q

ccqc

Snn

n

50.若圆的直径端点

1122

,,,AxyBxy,则圆的方程为

1212

0xxxxyyyy

51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A、B两点,则直线AB的斜率为定值

52.二项式定理的计算中不定系数变为定系数的公式:1

1

k

n

k

n

nCkC

53.三角形五心的一些性质:

(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等

(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心

(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心

(4)三角形的外心是它的中点三角形的垂心

(5)三角形的重心也是它的中点三角形的重心

(6)三角形的中点三角形的外心也是其垂足三角形的外心

(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍

54.在△ABC中,角A,B,C所对的边分别是a,b,c,则

2

222cba

ACAB





55.m>n时,2

2

nm

nmnm

e

nm

eeee


文章投稿或转载声明

本文链接:https://www.en369.cn/fanwen/xinxi-7-126308-0.html

来源:范文频道-369作文网版权所有,转载请保留出处。本站文章发布于 2023-01-20 20:23:11

发表评论

验证码:
用户名: 密码: 匿名发表
评论列表 (有 条评论
2人围观
参与讨论